Question Number	Answer	Acceptable answers	Mark
$1(\mathrm{a})(\mathrm{i})$	an explanation linking the following	(2)decomposition (of compound/substance /electrolyte)(1) up ignore separating reject splitting of atoms/elements/molecules for M1	

Question Number	Answer	Acceptable answers	Mark		
1(a)(ii)	(damp blue) litmus (paper) (1)	(turns red then) \{bleaches / goes white\} (1)	allow bleaches indicator for 1 mark ignore indicator goes lighter ignore smells of chlorine/swimming pools ignore any incorrect middle colour mentioned		
use of suitable named indicator with					
correct result					
e.					
(damp) universal indicator paper					
(1)					
(turns red then) bleaches (1)				\quad	(2)
:---					

Question Number	Answer	Acceptable answers	Mark
1(a) (iii)	poly(chloroethene)	PVC/polyvinylchloride/ polychloroethene/poly(chlorethene)	(1)

Question Number	Answer	Acceptable answers	Mark
$1(\mathrm{~b})(\mathrm{i})$	$\mathrm{D} \mathrm{AgCl}(\mathrm{s})$		(1)

Question Number	Answer	Acceptable answers	Mark
1(b)(ii)	same/no change		(1)

Question Number	Answer	Acceptable answers	Mark
1(b)(iii)	$\mathrm{HCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{HNO}_{3}$ - reactant formulae (1) - product formulae (1)	$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}$ max 1 if any incorrect attempt to balance reject incorrect use of cases and non-subscripts	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	$\mathrm{B} \quad \mathrm{H}^{+}$and Na^{+}ions		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i)}$	An explanation linking	ignore reference to number of electrons do not allow negative charge	
- electron(s) (1) (have been) lost/removed electrons	chlorine gains electrons (0) allow chlorine loses electrons (1)	(2)	

Question Number	Answer	Acceptable answers	Mark
2(a)(iii)	Any one from - it contains (excess) \{hydroxide/ OH^{-}\} ions (1) - $\quad\left\{\right.$ sodium $\left./ \mathrm{Na}^{+}\right\}$ions and \{hydroxide/ OH^{-}\} ions remain (1) - it is sodium hydroxide/ NaOH - $\left\{\right.$ hydrogen $\left./ \mathrm{H}^{+}\right\}$ions have been removed (at the cathode) (1)	ignore solution has pH greater than 7 allow no hydrogen ions left/acidic ions removed	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i v)}$	use $\{$ molten/liquid \} \{sodium chloride /electrolyte\} / melt \{it/sodium chloride/electrolyte\}	ignore just liquid/liquid sodium	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i)}$	An explanation linking	Marking point 1 \{hydroxide/ $\left.\mathrm{OH}^{-}\right\}$ions (from water)(1)	half equation, even unbalanced, electrons (2)
Marking point 2 (ions) lose electrons /are oxidised (1)	do not allow marking point 1 if only \{oxygen/sulfate\} ions mentioned	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i)}$	$1.27 / 63.5(1)(=0.02)$	0.02 with no working (1) correct working with incorrect answer (1)	(1)

Question number	Answer	Mark
3(a)(i)	C	(1)

Question number	Answer	Mark
3(a)(ii)	C	(1)

Question number	Answer	Mark
$\mathbf{3 (b)}$	reactants are being used up (1)	(1)

Question number	Answer	Mark
$\mathbf{3 (c)}$	An explanation that combines identification via a judgement $(1$ mark) to reach a conclusion via justification/reasoning $(1$ mark):	(aluminium and copper have different size atoms (1) and so this prevents the layers of metal atoms from sliding over one another (1)

Question number	Answer	Additional guidance	Mark
3(d)	proportion gold $=9 \div 24$ $(=0.375)(1)$ mass $=0.375 \times 12=4.5(\mathrm{~g})(1)$	Award full marks for correct numerical answer without working.	(2)

Question number	Answer	Mark
4(a)	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark): $\bullet \quad$ J and \mathbf{K} are electrolytes (1) because their solutions conduct electricity and are decomposed (1)	(2)

Question number	Answer	Mark
4(b)	D	(1)

Question number	Answer	Mark
4(c)	An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (3 marks): - hydrogen $\left(\mathrm{H}^{+}\right)$and sodium $\left(\mathrm{Na}^{+}\right)$ions attracted to cathode, hydroxide $\left(\mathrm{OH}^{-}\right)$ions and sulfate ($\mathrm{SO}_{4}{ }^{2-}$) ions attracted to anode (1) - because the ions are attracted to the oppositely charged electrode (1) - 2 hydrogen ions $/ 2 \mathrm{H}^{+}$accept 2 e to form hydrogen molecule/ H_{2} (1) - 4 hydroxide ions/ $4 \mathrm{OH}^{-}$lose 4 e to form oxygen molecule/ O_{2} (1)	(4)

Question number	Answer	Mark
4(d)	$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$ all species (1) balancing (1)	(2)

Question Number	Answer	Acceptable answers	Mark
5(a)(i)	$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$ - reactant formula (1) - product formulae (1) - balancing correct formulae (1)	Allow 1 mark for $2 \mathrm{H}^{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{2}+\mathrm{O}^{2}$ I gnore state symbols I gnore word equations	(3)

Question Number	Answer	Acceptable answers	Mark
5(a)(ii)	A description including the following: - lighted splint / ignite gas / gas burns(1)		
with (squeaky) pop (if air present) (1)		(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (\text { iii) }}$	A description including the following		
	• glowing splint (1)		
	relights (1)	smouldering splint I gnore blown out splint lighted splint burns brighter = 2	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b) (i)}$	B		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b) (i i)}$	use a fume cupboard/open all the windows/(good) ventilation/wear a gas mask	I gnore do not breathe in	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (c)}$	hydrochloric (acid)	I gnore HCl	(1)

